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Abstract: 

Advances in machine vision technologies have permeated many aspects of modern society, enabling automated security 

authentication and intrusion detection, automotive safety features, and everyday conveniences like rapid computer login. Artificial 

intelligence, especially machine learning, has been recently combined with image processing techniques to improve automated 

classification and identification of many types of artifacts and even people and animals in certain contexts. This paper presents a 

systematic literature review of current machine vision approaches used to monitor livestock and wildlife in outdoor habitats. This review 

was conducted to better understand the feasibility and potential opportunities for using machine vision approaches to support precision 

livestock farming applications on farms using outdoor habitats. The review found that automated monitoring of livestock and wildlife 

outdoors using machine vision shows promise but is still in early stages. Somewhat reliable techniques exist for basic animal 

monitoring capabilities, such as counting animals, but more advanced monitoring capabilities, such as specific animal identification 

and detection of health and welfare issues are open areas that continue to pose many technical and contextual issues. The review 

also found that the field lacks exploration of data fusion techniques (e.g., combining camera sources during analysis) that may address 

some existing technical challenges.  
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1 INTRODUCTION 

Competitive markets and increasing labor costs are forcing farmers to manage larger herds with fewer staff. 

Accordingly, a worker’s attention must now be split over more animals leading to missing cattle and unnoticed health 

issues.  

 

The ability to monitor large herds autonomously has the potential to bring significant cost savings for farmers with 

large herds due to reduction in staff costs. The appeal of more frequent monitoring also exists with autonomous 

methods having the potential to preform multiple checks on massive herds per day rather than one every week. 

Additionally, the monitoring of livestock with machine vision allows the technology to scale more easily as one does 

would not need to purchase additional monitoring equipment for each individual animal, in contrast to monitoring via 

RFID tags and other technologies placed directly on each animal. 

1.1 Research Questions 

To address the problem above, we conducted a systematic literature review to better understand the current state-

of-the-art in outdoor livestock monitoring. The following questions were used to guide and scope this literature review: 

i. What challenges have been identified in monitoring livestock outdoors with machine vision? 

ii. What techniques have been used to monitor livestock or wildlife outdoors with machine vision? 

Special consideration was given during the review to examples of multisource imaging techniques and the potential 

for data fusion, as early investigations into the problem and general knowledge from the machine vision field show 

promise in these areas. 
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1.2 Purpose of the Review 

This review examines and summarizes the work that has been done regarding the use of machine vision to monitor 

animals in an outdoor, unconstrained environment. That is, monitoring is done while animals move freely in large open-

range outdoor areas (e.g., pasture, rangeland, open wilderness). This scope contrasts many existing machine vision 

techniques used to monitor the health and welfare of livestock in indoor, constrained settings, such as in pens or chutes, 

that situate livestock in ideal lighting or viewing positions to favour machine vision algorithms (Rainwater-Lovett et al., 

2009; Viazzi et al., 2014; Zhao et al., 2018). The review also identifies common problems, current best solutions, and 

potential research directions to move this research area forward. 

1.3 Background 

Prior reviews have covered a diverse group of topics. Hollings et al.’s (2018) review, focused on detecting and 

counting wildlife from remotely sensed imagery, including satellite, uninhabited aerial vehicles (UAVs), and aerial 

imagery from aircraft. Their paper reviewed and categorized existing methods, results and compared findings from the 

literature. Relevant findings are discussed in detail in this review.  

 

Brack et al.’s (2018) review focused on the types of errors that current animal counting and animal population 

estimation algorithms used with UAV-based imagery run into as well as methods to correct them. These techniques 

are discussed in detail in this review.  

 

Finally, Valletta et al.’s (2017) review focused on a host of machine learning techniques machine learning (ML) 

techniques currently being used in animal behavior studies. Many of these techniques do not relate to image analysis, 

but instead involve analysis of other types of data. However, they do mention the use of ML techniques for classification 

of animal images using random forests and histograms of oriented gradients (HOG’s), the second of which is discussed 

below. 

2 KEY CONCEPTS AND TERMS 

To help readers understand the technical concepts discussed in the review findings, the following key concepts 

are defined. Many of these concepts relate to the artificial intelligence (AI) and machine learning (ML) techniques that 

were uncovered in the review. But others are more general machine vision concepts that are relevant for any image 

analysis technique applied.   

 

The following four potential outcomes are important to understand for any machine vision approach related to 

detection or classification of an object (or an animal) in each image.   

True Positive (TP): A test result that correctly indicates that the condition being tested for is present (i.e. an animal is 

detected / classified when an animal is actually in the image). 

False Positive (FP): A test result that incorrectly indicates that the condition being tested for is present when it is not 

(i.e. an animal is detected / classified when there is no animal (or no animal of that type) in the image). 

True Negative (TN): A test result that correctly indicates that the condition being tested for is not present (i.e. no animal 

is detected / classified when no animal (or no animal of that type) is actually in the image). 

False Negative (FN): A test result that incorrectly indicates that the condition being tested for is not present when it is 

(i.e. no animal is detected / classified when an animal is actually in the image). 

 

How well a machine vision algorithm performs relative to the above detection / classification outcomes is often 

presented and assessed using the following tools and metrics. 

 

Confusion Matrix: A confusion matrix is a table that shows the predicted results (i.e. output) of a detection 

/ classification algorithm compared to what the actual classes are, aggregated by class type.  



3 

Precision: Precision is defined by the equation 
  

. As such, having good precision relies on having a low number 

of false positives. 

Recall/Sensitivity: Recall is defined by the equation 
  

. As such, having good recall relies on having a low 

number of false negatives. 

F1-Score: The harmonic mean of precision and sensitivity. It is defined as 2    

  
. 

 

 Two commonly used tools and techniques in machine vision are: 

Thresholding: Thresholding is the act of setting cut-offs for some value and accepting everything in the regions you 

are interested in while rejecting the rest. This technique helps to focus an image analysis on areas that are more likely 

to contain the desired content. For example, when analyzing thermal imagery, it is common to set a threshold to a 

certain temperature value and ignore all areas of the image that are above or below that temperature value. In animal 

contexts, this can help separate “warm” bodies from “cooler” surroundings. 

OBIA: Object Based Image Analysis (OBIA) is a technique that works on the idea that it is not enough to simply evaluate 

what a pixel is by its colour. Instead, it preforms segmentation on an image to divide it into many small portions before 

classifying those portions based a host of potential features such as spectral signature, shape or size before taking 

extra user configurable steps such as combining adjacent sectors of the same type, or cross referencing with other 

types of data such as lidar, infrared, multispectral or even vector based data (Blaschke, 2010). For example, when 

analyzing a combination of infrared and RGB imagery, one may choose to preform segmentation on the RGB imagery 

and use both the color and the infrared heat values in the same location to classify each segment as animal or 

background. 

 

 The review found a strong trend of incorporating artificial intelligence, in particular, machine learning, 

techniques to help improve the detection and classification of animals in outdoor contexts. Core concepts to help 

understand these findings are provided below.   

 

Machine learning: Computer algorithms that improve automatically through experience, without being explicitly 

programmed to do a specific task. In the context of livestock detection, it refers to a class of algorithms that optimize 

themselves based on correct examples of counting to learn what an image needs to look like for us to consider there 

to be an animal there. 

 

Artificial Neural Network (ANN / NN): An artificial neural network is a machine learning model based on the biological 

neurons within the human brain. The model includes at least three layers of connected nodes, input, hidden, and output 

layers. More complex models will have more than one hidden layers (i.e. layers of connected nodes). By determining 

the difference between the correct output and the output of the model (network), one can automatically optimize the 

weights (nodes in the hidden layers) within the network to approach the correct answer over a group of training 

examples (Jain et al., 1996). 

 

Convolutional Neural Network (CNN): CNN’s extract learned features from images, often iteratively and feed them 

to a fully connected network for localization and classification of objects (LeCun et al., 1999). 

 

Recurrent Neural Network (RNN): Recurrent Neural Networks are used when analyzing sequences such as frames 

of a video. They work by using part of the output of the network as part of the input for the analysis of the next frame, 

thus letting the network choose what to remember from old frames (Sherstinsky, 2020). 

 

The following concept is used in many fields, including machine vision, to help account for limitations in relying 

on any one single data source. 
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Data Fusion: Data fusion refers to the combination of multiple data sources, often of different types (e.g., lidar, RGB, 

infrared) in order to produce more accurate and useful information than one source on its own. 

 

Optical flow: Optical flow illustrates the pattern of apparent motion between the observer and objects in visual scene 

(Fang et al., 2016). 

The next subsections provide instructions on how to insert figures, tables, and equations in your document.  

3 METHODOLOGY 

As this is a systematic literature review, search terms were generated and iterated on to produce as many relevant 

articles as possible. The specific search terms used in both the Web of Science (WoS) and EBSCO Host databases 

are provided below:  

“(Comput*  OR Machine  OR Algorithm  OR Neural  OR Processing OR artificial) AND (Aerial  OR Outside  OR Outdoors 

OR Remote Sens*) AND (Sensor*  OR Detect*  OR Monitor  OR Camera*  OR Drone  OR UAV  OR UAS ) AND (Vision  

OR Imag*) AND (Livestock  OR Bovine  OR Pig  OR Cow  OR Herd  OR Animal  OR Cattle OR wildlife ) AND (farm* 

or agri* or ecolog* or wildlife) NOT (Crop* OR Plant* OR Bird  OR Rodent OR "human health" OR Microb* OR Marine  

OR Insect)” 

 

The generated articles were filtered to include papers published in 2005 or later. Afterwards the papers were filtered to 

manually remove papers with the following exclusion criteria: 

• Extended abstracts. 

• Papers lacking an English translation. 

 

Papers were also filtered according to the following inclusion criteria:  

• Use of machine vision technologies, or those that directly support machine vision. 

• Topic must involve livestock or wildlife in an outdoor setting. 

 

The initial search found 136 papers in WoS and 188 papers in EBSCO. After duplicate records were removed, 296 

papers remained. These papers were then filtered using these criteria based on their abstracts (70 papers remained), 

and then again based on their full contents (31 papers remained). After this initial screening, each paper was 

read. While reviewing these full papers, the “snowball” method was also used to source additional key papers: Papers 

cited within the reviewed papers which both appeared relevant and passed the aforementioned criteria were added to 

a list of related papers and also included in the review. This added an additional 37 papers to the selected dataset. 

The paper selection process is summarized in Figure 1.  

This research was completed in the span of a summer work term and thus some older snowball papers may have 

been left out due to the time constraint. 
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Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) 

 

4 RESULTS 

The animal monitoring approaches found in the review involved the use of different types of imagery 

sourced from cameras that capture different parts of the light spectrum. Different spectra can 

be used in different contexts. For instance, infrared wavelengths can be used for thermal detection to monitor animals 

at night when it is too dark to use the visible spectrum. Different spectra can be combined to provide different 

information about the same scene as well. The types of imagery used in the reviewed papers are first discussed to 

provide a understanding of the type of data that the uncovered machine vision techniques are using. Next, the key tools 

and techniques for monitoring animals outdoors found in the review are presented. These findings are organized 

by the main vision techniques found in the review. Then, common themes shared across multiple papers, such as data 

augmentation and data fusion, are overviewed. papers that introduce novel concepts are also briefly discussed. Note 

Records identified through 
Web of Science 

(n = 136) 

Records identified through 
EBSCO Host  
(n = 188) 

Records screened after 
duplicate removal 

(n = 296) 

Records excluded for lack of 
relevance 
(n = 226) 

Full‐text articles assessed 
for eligibility 
(n = 70) 

Full‐text articles excluded for 
lack of immediate relevance 

(n = 38) 

Studies included in 
qualitative synthesis 

(n = 31) 

Studies included in 
quantitative synthesis 

(meta‐analysis) 
(n = 37) 

Snowball articles found from 
references 
(n = 6) 

Full‐text articles excluded for 
lack of English translation 

(n = 1) 

Figure 1. PRISMA chart describing the selection and filtering process that results in the reviewed articles. 
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that a paper being mentioned in one section does not preclude it from appearing in another as some papers fall into 

multiple categories when it comes to the type of techniques used.  

4.1 Types of Imagery 

4.1.1 Visible spectrum (RGB) 

Images in the visible spectrum usually comes courtesy of RGB cameras, which have the advantage of being 

some of the highest resolution per dollar options when compared to infrared, multispectral or time of flight cameras. 

Taking advantage of all the information in RGB images has been done in the literature through methods that evaluate 

the image in chunks rather than each pixel in isolation such as OBIA (Barbedo & Koenigkan, 2018; Chrétien et al., 

2016) or CNN’s (Andrew et al., 2017; Barbedo et al., 2019, 2020; Barbedo & Koenigkan, 2018; Bonneau et al., 2020; 

Bowley et al., 2017, 2019; Corcoran et al., 2019; Eikelboom et al., 2019; Kellenberger, Marcos, & Tuia, 2018; 

Kellenberger, Marcos, Courty, et al., 2018; Kellenberger et al., 2017; Sadgrove et al., 2018; Shao et al., 2020; Xu, 

Wang, Falzon, Kwan, Guo, Sun, et al., 2020). Thresholding has also been attempted on RGB imagery in conjunction 

with further pre and postprocessing with mixed results (Barbedo et al., 2020; Vayssade et al., 2019). 

 

Techniques using RGB imagery have achieved a wide variety of results depending on the specific detection 

technique used. Shao et al. (2020) managed to achieve F1 scores of 95.2% when testing on images from the same 

dataset as the training images and 71.3% when testing on images from a set with a different background than the 

training set. A different paper working with a wide variety of backgrounds (Kellenberger, Marcos, & Tuia, 2018) and 

using RGB imagery achieved an F1 score of 60% when recall was set to 70%. Most other papers had results in the 

same range as these papers. 

4.1.2 Infrared 

Infrared imaging for counting animals, though less popular lately due to the rise of CNN’s, has been used to 

great effect due to it being able to effectively separate warm-blooded animals from the background via thresholding. 

Papers using exclusively infrared imaging focused on ways to filter out false positives caused by objects heated by the 

sun as well as segmentation of herds of animals into individuals (Christiansen et al., 2014; Corcoran et al., 2019; Lhoest 

et al., 2015; Longmore et al., 2017; Ward et al., 2016).  

 

Longmore et al. (2017) achieved a detection accuracy of approximately 70% with infrared images on cattle 

and the authors claim that over multiple frames of video, all cows were eventually detected. A separate paper relying 

on infrared data to count hippos achieved count errors of under 15% percent on four testing images containing 

approximately 100 hippos each (Lhoest et al., 2015). 

A common thread among papers using infrared imagery is the recommendation to take videos early in the 

morning and late at night as these two times of day would provide the highest thermal contrast between animals and 

the background. 

4.1.3 Multispectral 

Multispectral imaging has largely been used to detect vegetation (Barbedo & Koenigkan, 2018; Gil et al., 

2014). Much like infrared imagery, the capture devices necessary suffer from high cost and low resolution. Some of the 

reviewed literature has claimed high spectral fidelity has potential to detect and distinguish animals as different species 

have different spectral signatures (Terletzky et al., 2012). Little work has been done using multispectral imagery 

excepting studies that have explored its fusion with panchromatic (visible spectrum) imagery in order to overcome the 

resolution limitations (Witharana et al., 2016).   
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4.2 Tools and Techniques for Identification 

A Note on Study Results 

Directly comparing results and statistics between techniques and studies is difficult due to varied methods of 

measuring accuracy and categorizing true positives. Moreover, most papers apply their techniques to different datasets, 

so direct comparison is not feasible. 

4.2.1 Thresholding 

A common approach in many reviewed papers was to use some form of thresholding to help filter 

out irrelevant parts of an image. For example, several papers applied thresholding to infrared data where all pixels 

above a chosen intensity (heat) are kept while the rest are discarded giving algorithms an easy way to filter out parts 

of the image unlikely to contain animals (because animals are typically warm blooded). Thresholding is a fundamental 

tool for image processing that is often paired with the others described in this review and is not limited to any particular 

type of data (Barbedo et al., 2020; Barbedo & Koenigkan, 2018; Fang et al., 2016; Gonzalez et al., 2016; Hollings et 

al., 2018; Longmore et al., 2017; Vayssade et al., 2019; Ward et al., 2016).  

 

Challenges that come with thresholding involve understanding the best threshold settings since a slight shift 

in hardware, environment, or target object can render thresholds inaccurate. This is clearly presented in Vayssade et 

al. (2019), who used different thresholds to deal with different coloured goats and different backgrounds, shown in 

Figure 2. Other researchers have accounted for lighting and ambient heat variance using dynamically calculated 

thresholds (Barbedo et al., 2020). 

 

 

Figure 2. The results of 4 different thresholding methods on 4 different animal images. (Vayssade et al., 2019) 
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4.2.2 Object Based Image Analysis (OBIA) 

OBIA is an expert system (Blaschke, 2010). This means that it is programmed to make decisions using expert 

knowledge and hand coded set of rules. It is not limited to any one type of data and has shown to be effective in the 

fusion of data sources (infrared and RGB). When used to count white tailed deer from UAV footage, it outperformed 

both supervised and unsupervised pixel based approaches by an order of magnitude in terms of accuracy by reducing 

false positives (Chrétien et al., 2016). Both supervised and unsupervised methods experience overestimations by a 

factor of 20 to 51 on the various test images. Using OBIA with RGB and infrared data, they achieved perfect detection 

under the best conditions with no false negatives or false positives, but it should be noted that both the number of test 

images and the number of animals within each image was under 10. The average detection rate was 50%, with all 

missed deer being attributed to tree cover, meaning that visible identification was perfect. This result contrasts with 

work done earlier by Yang et al. (2012) which also compared pixel and OBIA methods for animal detection of migrating 

mammals in African savannahs. It failed to find a difference in performance of the two algorithms with the results 

showing a false positive rate of 11%-15% and a false negative rate of 12% for pixel based methods while OBIA achieved 

similar results with false positive rates of 7%-13% and false negative rates of 13%-16%. 

The main drawbacks of OBIA appear to be the need to craft expert rulesets for each type of animal manually, 

and the long amount of time it takes to process a single image (Hollings et al., 2018). 

 

4.2.3 Convolutional Neural Network (CNN) Based Techniques 

 When applied to the counting and detection of animals, CNNs have proven effective in their ability to operate 

on RGB imagery (Andrew et al., 2017; Barbedo et al., 2019, 2020; Bowley et al., 2017, 2019; Chamoso et al., 2014; 

Eikelboom et al., 2019; Kellenberger et al., 2017; Kellenberger, Marcos, & Tuia, 2018; Rivas et al., 2018; Shao et al., 

2020). 

 

Almost all studies in the review using CNN’s with the exception of Corcoran et al. (2019) have used pure RGB data, 

likely to take advantage of networks that have been pretrained on large datasets. These networks have not been trained 

on infrared data or any combination of RGB and infrared. Pretrained CNNs are those that are trained on existing, 

usually very large, image datasets, and thus, are already trained to identify many everyday items, and image features. 

They are not specifically trained for livestock or wildlife applications.  

 

 CNN’s are often employed in different ways depending on the goals of the study and the precise type of CNN 

being used.  

 

CNN’s have been applied with great success in animal detection. When detecting and classifying multiple 

species (elephant, zebra, giraffe) with ResNet, (another open source CNN architecture) as described in Eikelboom et 

al. (2019), they were able to achieve results as presented in the precision/recall graph in Figure 3 with both precision 

and recall scores of over 70%. 
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Figure 3. Average precision (AP) Precision/recall curves of the animal detection algorithm for elephant (AP ≈ 0.81), 
giraffe (AP ≈ 0.79), and zebra (AP ≈ 0.72) on the test set (mean AP ≈ 0.77). The precision/recall combinations with the 

highest F1-scores (0.76 for elephant, 0.78 for giraffe and 0.71 for zebra) are marked with dashed lines (Eikelboom et al., 
2019) 

A grid based technique was used by Barbedo et al (2020) where a CNN was trained to identify if there was a 

part of a cow in a small image. This network was run over a large image in a grid, blacking out squares without cattle 

parts and leaving the squares with cattle as seen in Figure 4. Once only squares with cattle were identified, colour 

space manipulations used to enhance contrast and thresholds were applied to generate binary masks. These masks 

were then fused together, and the resulting images had the now standing out cattle counted via feature matching. When 

predicting the number of cattle in a cluster, they achieved both precision and recall scores of over 80% for group sizes 

of 1-8 and 97.4% for both the precision and recall of all cluster sizes. 

It should be noted that the environment did not contain other animals and was largely uncluttered and well lit. 

This provides good contrast and may have made it easier to detect cattle. In cases with sheds and feeders, the CNN 

would largely ignore them, but parts of the structure would remain when there were animals nearby. This would 

inevitably cause overcounts through false detections. 
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Other techniques use the activations (how sure the network is that an animal feature is in each part of the 

image) as input to a bounding box predictor such as in Figure 5. Here, both the activations of the recognition network 

and the original features work to generate bounding boxes across the image. Often the activations are generated via a 

sliding window rather than a grid. Using multiple window sizes can be prove useful for detecting animals that vary in 

size, such as fully grown cows and their calves (Rivas et al., 2018). 

 

R-CNN’s seek to combine the abilities of CNN’s to process images with the abilities of RNN’s to process 

sequence information. With this, video can be analyzed which is often more informative than a single frame. An example 

of how each frame (f) is fed into the network can be seen in Figure 6. Andrew et al. (2017) used this technique to locate 

cattle and distinguish individual cattle based on their black and white markings with the increased temporal information. 

For the purpose of detection and localization, the R-CNN was able to achieve well above 95% precision and recall with 

mistakes cropping up around animals close together. For individual identification, they were able to achieve 98.13% 

accuracy. It should be noted that the cattle were of the Holstein Friesian variety and their spotting is what made it 

possible to distinguish them from one another.  

Figure 5. Architecture of the CNN based animal detection model (Kellenberger et al., 2017) 

Figure 4. The results of the first step of image parsing via CNN to limit the search area (Barbedo et al., 2020) 
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 R-CNN’s come in a variety of network architectures, each with their own strengths and weaknesses. The 

architectures mentioned in this section are open source.  

 

Mask R-CNN (He et al., 2020) is a variant that has shown promising results in the detection and segmentation of 

animals including cattle and sheep (Xu, Wang, Falzon, Kwan, Guo, Chen, et al., 2020; Xu, Wang, Falzon, Kwan, Guo, 

Sun, et al., 2020). Unlike other algorithms, Mask R-CNN generates tight masks over individual selection in addition to 

bounding boxes. The selection of cattle, as well as just the selection of their heads were demonstrated on small groups 

with a variety of angles and backgrounds including pasture and feedlot. Mask R-CNN showed counting accuracies 

consistently above 90% for the tasks of appearance detection and head detection. It performed similarly to comparable 

algorithms such as Faster R-CNN (Ren et al., 2017) and YOLO v3. 

 

 Finally, Andrew et al. (2019) used 3 different types of CNN architectures onboard their UAV: A YOLOv2 

(Redmon & Farhadi, 2016) based species detector, a dual-stream network to determine the next grid location to explore, 

and an InceptionV3 (Szegedy et al., 2016) based R-CNN for individual animal identification. The study achieved 

detection accuracies of 92.4% and individual identification accuracies of 93.6% (although it should be noted that much 

like their previous study, the cattle were of the Holstein Friesian variety with distinct spots. Additionally, there were only 

17 unique cows).  For the optimal navigation to locate the maximum number of cattle within a designated area, they 

found that their algorithm made the optimal direction decision 72.45% of the time. 

4.2.4 Invariants 

Animals do not always appear in the middle of images, or in the same posture and orientation. Therefore, 

features that are posture, rotation and translation invariant can be useful for classification of areas highlighted by other 

means (infrared thresholding, CNN, etc.). Invariants such as thermal contour signatures (Christiansen et al., 2014) and 

Histograms of Oriented Gradients (HOGs) (Torney et al., 2016; Valletta et al., 2017) have been used with moderate 

success to classify potential animals. The algorithm implemented by Torney et al. (2016) was able to distinguish 

between wildebeest and zebra and achieved a precision of 75.15% and recall of 85.83% from greyscale imagery. It 

was noted that, for the purpose of population estimation, the algorithm achieved a better score than either expert 

achieved on their first try due to the fact that while its mean absolute error was higher than that of experts, it was not 

biased to one side (overcounting or undercounting bias), leading to a more accurate final count. 

Figure 6. Architecture of recurrent cattle detection network (Andrew et al., 2017) 



12 

4.2.5 Motion Detection 

Motion has been used to detect wildlife in a number of papers (Fang et al., 2016; Y Oishi & Matsunaga, 2010; 

Yu Oishi & Matsunaga, 2014). As shown in Figure 7, Fang et al. (2016) computed optical flow across a sequence of 

frames in order to estimate the velocity of each pixel before correcting for drone motion. They then applied thresholds 

to single out moving pixels and morphological operations to remove noise.  

 

This technique was successfully used to identify zebra and antelope with false positive rates of 2.03% and 

12.50% respectively and false negative rates of 17.97% and 11.39%. The high false positive rate for antelope was said 

to be caused by poor optical flow estimation. The authors do not elaborate further but this may have been caused by 

their camouflage texture when overlaid on certain types of backgrounds.  

 

The authors note that an advantage of relying on motion is that it takes little account of colour, texture, and 

the influence of illumination (Fang et al., 2016). As noted by Haalck et al. (2020) which used a separate motion 

detection/tracking technique, motion analysis is not dependent on colour or wavelength and can thus be applied to any 

type of video including infrared, multispectral, night vision and more. Additionally, because the technique does not rely 

on machine learning, it does not require training. 

 

A clear drawback of this approach is the potential to miss still animals. For this reason, work should be 

considered by combining texture and colour space segmentation for stationary animals. Fang et al. (2016) also mention 

the effect of parallax makes their method of thresholding less effective for pixels further from the camera.  

 

Other relevant work on the subject of animal motion detection was done by Oishi & Matsunaga (2014) where they 

extracted features such as trees in order to help match images more easily. 
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Figure 7. (a) Original video frame (b) Optical flow vectors (c) Binary mask without morphologic operation (d) Binary mask after 
morphologic operation (e) Segmentation with great errors (f) Detection result. (Fang et al., 2016) 
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4.3 Miscellaneous Techniques 

4.3.1 Border Classes 

In the work by Kellenberger, Marcos, & Tuia (2018), it was noted that training a model on patches of images patches 

instead of single examples had the effect of “spillage” along the spatial boundaries between locations of different 

classes as shown in Figure 8. Their CNN classified locations into animal and background by considering the location’s 

neighboring pixels via the model’s receptive field. This may fail when the receptive field is part background and part 

animal as it should be labeled background to avoid multiple central detections. Training with these sections labeled as 

background risks causing the CNN to learn that patches influenced by animals through the receptive field belong to the 

background class. Ignoring the issue in turn causes problems with animal clusters as all sections are predicted to be 

of the animal class and they cannot be properly separated anymore.  

Figure 8. A CNN takes into account multiple neighbors of a specific location (“receptive field”) to determine the likelihood of the center 
location being an animal (a). To avoid confusion of animals not in the center, but still in the receptive field (b), they introduce a border 

class around a true location (Kellenberger, Marcos, & Tuia. 2018). 

Their solution involved creating a third border class which allowed those regions to be categorized separately and 

only the centers of animals to be recorded as true animal detections. This technique showed a significant improvement 

over an identical model trained without it with significantly higher precision across all recall rates as shown in Figure 9. 
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Figure 9. The results of ablation studies to show the difference in performance when individual parts of the training process 
were changed or removed. Important are the light blue and pink lines which follow the full model and model with no border 

class respectively. (Kellenberger, Marcos, & Tuia. 2018). 

 

4.4 Data Techniques for Improving Detection and Classification 

4.4.1 Examples of Data Fusion 

One type of application for fusion was the upsampling of multispectral imagery through fusion with the much 

higher resolution panspectral imagery taken from a similarly positioned camera. The study was conducted with imagery 

of Antarctic wildlife gathered from satellite footage. 

 

Various algorithms for data fusion were qualitatively and quantitatively evaluated by a group of experts and 

by an ensemble of benchmarks respectively for the purpose of counting wildlife (Witharana et al., 2016). The experts 

evaluated the algorithms visually on how easy they made it to accurately count the animals in the resultant images 

which were displayed in false colour (false color is used to display images in color which were recorded partially or 

entirely outside the visible spectrum), while the benchmarks gave scores for spectral and spatial accuracies. The results 

of the benchmarks are assumed to indicate the best fusion algorithms for automatic counting and classification systems.  

 

Of the seven algorithms evaluated, the High-Pass fusion (Chavez et al., 1991) and University of New 

Brunswick fusion (Zhang, 2002) algorithms were found to be best for manual wildlife detection while Gram-Schmidt 

fusion (Laben & Brower, 2000) and University of New Brunswick fusion algorithms were found to be best for automated 

classification (Witharana et al., 2016). 
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It should be noted that the authors of the studies themselves state that some of the 14 benchmarks used may 

be redundant or correlated, and of the 14 benchmarks only 3 of them gave scores for the spatial accuracy while the 

rest focused on spectral accuracy. Furthermore, no actual wildlife counting tests were done using any type of automated 

system to verify the validity of the authors interpretations of the benchmarks. 

 

Another example of data fusion was its use in the counting of white tailed deer by taking advantage of both 

RGB and infrared imagery (Chrétien et al., 2016). The authors experimented with supervised and unsupervised pixel 

classification, as well as OBIA. Each method was tested with pure RGB, pure infrared and combined data. The pixel 

classification methods were also tested using the results of Principal Component Analysis (PCA) on the combined data. 

The results of passing both data sources and using PCA fusion were mixed when it came to the pixel based algorithms, 

with no general improvement over pure infrared (though significant improvement over pure RGB). When it came to 

OBIA however, using both data sources resulted in a complete reduction of false positives leading to a perfect detection 

on the test set.  

 

Important to consider in this study is the small testing set and the small number of animals to be counted in 

each image. 

4.4.2 Data Augmentation 

For algorithms that relied on training a detector, (such as CNN’s) the training data was the most important 

part. Machine learning systems often require an enormous amount of training data and acquisition of data for the 

counting of cattle or various wildlife is time consuming and expensive. To increase the amount of data available for 

training, studies relied on various methods of data augmentation including rotation, mirror, translation, and the addition 

of gaussian noise. 

 

 Some publications excluded non 90-degree rotations. Kellenberger et al. (2018) stated, “We limit rotation 

angles to multiples of 90 degrees to avoid spatial shifts of the (reduced size) ground truth due to nearest-neighbor 

interpolation”. Andrew et al. (2017) noted that not all algorithm implementations currently support the parametrization 

of object rotation leading newly generated orthogonal bounding boxes to include more background pixels. Other papers 

however have allowed more rotations without adverse effects (Shao et al., 2020). 

 

4.4.3 Citizen Science 

Crowdsourcing of labeling has been used to process large amounts of images for wildlife monitoring. Bowley et al. 

(2019) explored the use of images labeled by untrained citizen scientists in the training of a CNN detector for white 

phase snow geese in aerial imagery. Blue phase snow geese where considered background. The results of the CNN 

were then run through a blob detector to amass a final count. The paper compared CNN’s trained on expert labels to 

those trained on citizen labels, as well as those trained on citizen labels that had been matched with those of other 

citizen scientists to remove false positives. 

 

After images that had mosaicking artifacts were removed, the expert trained CNN resulted in an overcount of 88%. 

Matched and unmatched citizen science results showed overcounts of 150% and 250% respectively showing that while 

expert data is still best, matched citizen scientist labels provide a significant improvement over unmatched data and 

have the potential to increase the size of machine learning datasets for this area of research. 
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5 DISCUSSION 

5.1 Monitoring Trends 

Research on the topic of counting wildlife with machine vision in recent years has been highly focused on machine 

learning, more specifically, on CNN based techniques, mostly with RGB imagery. Efforts made at finding techniques to 

deal with clusters of animals have achieved moderate success (Barbedo et al., 2020; Xu, Wang, Falzon, Kwan, Guo, 

Chen, et al., 2020; Xu, Wang, Falzon, Kwan, Guo, Sun, et al., 2020).  

5.2 Challenges  

The challenges associated with monitoring livestock in an uncontrolled environment are highly related to the data 

collection aspect that goes into training the models. Papers that focused on large animals rarely had datasets larger 

than a few hundred animals (Hollings et al., 2018) with at most a few thousand annotations in a few hundred images. 

To put this in perspective, Luo et al. (2017) who explored both vehicle recognition and face recognition used datasets 

of nearly 90,000 images and 5000 images respectively for the two tasks. 

 

The small datasets and the large amount of time it takes to generate them creates a barrier for this type of research 

and casts doubt on how robust some of the generated models are. It should be noted that most datasets collected by 

the studies only focused on one geographical area and one animal subspecies (Andrew et al., 2017; Bowley et al., 

2019; Chrétien et al., 2016). It has been shown by Kellenberger et al. (2018) that the simple act of changing to a new 

camera, altitude or year could have significant adverse effects on the accuracy of an animal counting model. Their 

solution (optimal transport) produces a small improvement but still leaves precision and recall very low.  

 

Animal size variation has been shown to be a significant problem with calves being missed by detection algorithms, 

especially when in close proximity to larger animals (Barbedo et al., 2020). Algorithms tested with grounded, static 

cameras also had issues detecting young goats (kids), with them making up over half of all false negatives in the paper 

by Bonneau et al. (2020).  

 

Double counting, or missing animals due to their movement between scans is an issue occasionally brought up. 

This problem becomes more pressing with low altitude scans due to the increased opportunities for animals to move 

into already scanned sections from unscanned sections, or vice versa. In the ideal scenario the entire field would be 

captured in one shot from high above, but this is infeasible given the size of large pastures. On the subject of altitude, 

much of the imagery is taken below 200m. Papers that experimented with changing the altitude often found detection 

accuracy would sometimes drop significantly above 60m and often much lower (Barbedo et al., 2019) as shown in 

Figure 10. It is unclear if a higher resolution camera is the solution to this problem; however, altitude may be limited by 

transportation regulations in some regions. 
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5.3 Directions for Future Research 

The fusion of various sources of data appears to be underexplored in this space and may be a possible direction 

for improving algorithm performance. In addition to improving current algorithms, incorporating more data sources (such 

as infrared and hyperspectral imagery) may allow algorithms to make new inferences about the health of a particular 

animal (Barbedo & Koenigkan, 2018). Moreover, the integration of multiple camera sources may be an effective way 

to deal with availability errors in blind spots. 

 

Health in general has been an underexplored topic in the reviewed papers. The ability to use remote imagery to 

assess the general health and potential injuries of an animal or an entire herd has not been explored. Research into 

grazing patterns and herd dynamics could allow UAV imagery to be analyzed to determine if a herd is healthy and 

stable and relay the information to farmers as an early warning.  

6 CONCLUSION 

Studies on the automatic monitoring of wildlife via machine vision outdoors have produced a variety of effective 

techniques. Of these, CNNs seem to be the most effective method when it comes to counting animals. A variety of 

image sources have been successful including RGB and infrared, but most CNN papers limit their use to RGB for the 

moment. Current challenges include the cost of data acquisition and labeling, animal size variation, and animal 

proximity leading to missed detections. The field currently has a lack of exploration on the topic of data fusion and 

animal health beyond counting. Combinations of camera sources have yet to be explored. These are the key areas to 

explore for improvements and new research directions. 
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